
A Logical Study of Program Equivalence

Guilhem Jaber

Ecole des Mines de Nantes
LINA - Ascola

PhD Defense
Institut Henri Poincaré (Paris)

July 11th 2014
1 / 38

Why study the Equivalence of Programs ?

Specification of programs

 Equivalence between a program we can trust and an optimized one.

Compiler optimizations.

 Towards verified compilers.

Representation independence of Data

 Parametricity, Free theorems.

Crucial in denotational semantics

 Full-abstraction result.

2 / 38

Why study the Equivalence of Programs ?

Specification of programs

 Equivalence between a program we can trust and an optimized one.

Compiler optimizations.

 Towards verified compilers.

Representation independence of Data

 Parametricity, Free theorems.

Crucial in denotational semantics

 Full-abstraction result.

2 / 38

Why study the Equivalence of Programs ?

Specification of programs

 Equivalence between a program we can trust and an optimized one.

Compiler optimizations.

 Towards verified compilers.

Representation independence of Data

 Parametricity, Free theorems.

Crucial in denotational semantics

 Full-abstraction result.

2 / 38

Why study the Equivalence of Programs ?

Specification of programs

 Equivalence between a program we can trust and an optimized one.

Compiler optimizations.

 Towards verified compilers.

Representation independence of Data

 Parametricity, Free theorems.

Crucial in denotational semantics

 Full-abstraction result.

2 / 38

What kind of Equivalence ?

Contextual Equivalence

 Programs seen as black boxes.

Extensional behavior of programs

 Observational equivalence.

Depends on the language contexts are written in

 discriminating power of contexts,
 from purely functional languages to assembly code.

3 / 38

What kind of Equivalence ?

Contextual Equivalence

 Programs seen as black boxes.

Extensional behavior of programs

 Observational equivalence.

Depends on the language contexts are written in

 discriminating power of contexts,
 from purely functional languages to assembly code.

3 / 38

What kind of Equivalence ?

Contextual Equivalence

 Programs seen as black boxes.

Extensional behavior of programs

 Observational equivalence.

Depends on the language contexts are written in

 discriminating power of contexts,
 from purely functional languages to assembly code.

3 / 38

For what kind of Language: RefML

A typed call-by-value λ-calculus: (λx : τ.M)v → M {v/x}

with Integers and Booleans: if b then 0 else n + 1

with higher-order references: ref 2, ref (λx .M)
stored in heap via locations: (ref v , h)→ (`, h · [` 7→ v])

(` fresh in h)
mutable: x :=!x + 1

No pointer arithmetic: (`+ 1) is ill-typed
But equality test: `1 == `2 is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of M1,M2:

∀C .∀h.(C [M1] ⇓, h)⇐⇒ (C [M2] ⇓, h)

4 / 38

For what kind of Language: RefML

A typed call-by-value λ-calculus: (λx : τ.M)v → M {v/x}

with Integers and Booleans: if b then 0 else n + 1

with higher-order references: ref 2, ref (λx .M)
stored in heap via locations: (ref v , h)→ (`, h · [` 7→ v])

(` fresh in h)
mutable: x :=!x + 1

No pointer arithmetic: (`+ 1) is ill-typed
But equality test: `1 == `2 is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of M1,M2:

∀C .∀h.(C [M1] ⇓, h)⇐⇒ (C [M2] ⇓, h)

4 / 38

For what kind of Language: RefML

A typed call-by-value λ-calculus: (λx : τ.M)v → M {v/x}

with Integers and Booleans: if b then 0 else n + 1

with higher-order references: ref 2, ref (λx .M)
stored in heap via locations: (ref v , h)→ (`, h · [` 7→ v])

(` fresh in h)
mutable: x :=!x + 1

No pointer arithmetic: (`+ 1) is ill-typed
But equality test: `1 == `2 is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of M1,M2:

∀C .∀h.(C [M1] ⇓, h)⇐⇒ (C [M2] ⇓, h)

4 / 38

For what kind of Language: RefML

A typed call-by-value λ-calculus: (λx : τ.M)v → M {v/x}

with Integers and Booleans: if b then 0 else n + 1

with higher-order references: ref 2, ref (λx .M)
stored in heap via locations: (ref v , h)→ (`, h · [` 7→ v])

(` fresh in h)
mutable: x :=!x + 1

No pointer arithmetic: (`+ 1) is ill-typed
But equality test: `1 == `2 is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of M1,M2:

∀C .∀h.(C [M1] ⇓, h)⇐⇒ (C [M2] ⇓, h)

4 / 38

For what kind of Language: RefML

A typed call-by-value λ-calculus: (λx : τ.M)v → M {v/x}

with Integers and Booleans: if b then 0 else n + 1

with higher-order references: ref 2, ref (λx .M)
stored in heap via locations: (ref v , h)→ (`, h · [` 7→ v])

(` fresh in h)
mutable: x :=!x + 1

No pointer arithmetic: (`+ 1) is ill-typed
But equality test: `1 == `2 is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of M1,M2:

∀C .∀h.(C [M1] ⇓, h)⇐⇒ (C [M2] ⇓, h)

4 / 38

For what kind of Language: RefML

A typed call-by-value λ-calculus: (λx : τ.M)v → M {v/x}

with Integers and Booleans: if b then 0 else n + 1

with higher-order references: ref 2, ref (λx .M)
stored in heap via locations: (ref v , h)→ (`, h · [` 7→ v])

(` fresh in h)
mutable: x :=!x + 1

No pointer arithmetic: (`+ 1) is ill-typed
But equality test: `1 == `2 is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of M1,M2:

∀C .∀h.(C [M1] ⇓, h)⇐⇒ (C [M2] ⇓, h)

4 / 38

Synchronization of Callbacks (I/II)

λf.f() is not equivalent to λf.f(); f()

 Contexts can check how many time f is called.

 Callbacks are fully observable!

C [•] def
= let x = ref 0 in • (λ .x :=!x + 1); if !x > 1 then Ω else()

can discriminate them.

5 / 38

Synchronization of Callbacks (I/II)

λf.f() is not equivalent to λf.f(); f()

 Contexts can check how many time f is called.

 Callbacks are fully observable!

C [•] def
= let x = ref 0 in • (λ .x :=!x + 1); if !x > 1 then Ω else()

can discriminate them.

5 / 38

Synchronization of Callbacks (II/II)

λf.(f 1) + (f 2) is not equivalent to λf.(f 2) + (f 1)

 Arguments given to callbacks must be related.

C [•] def
= let x = ref 0 in • (λy.x := y); if !x == 1 then Ω else()

can discriminate them.

6 / 38

Synchronization of Callbacks (II/II)

λf.(f 1) + (f 2) is not equivalent to λf.(f 2) + (f 1)

 Arguments given to callbacks must be related.

C [•] def
= let x = ref 0 in • (λy.x := y); if !x == 1 then Ω else()

can discriminate them.

6 / 38

Disclosure of Locations (I/II)

λ .let x = ref0 in 1 is equivalent to λ .1

 The creation of the reference bounded to x is not observable by the
context.

 It is private to the term!

7 / 38

Disclosure of Locations (II/II)

λf.let x = ref0 in fx; x := 1

is not equivalent to

λf.let x = ref0 in fx; x := 2

 The reference bounded to x is disclosed to the context.

 It can look inside afterward to see what is stored.

C [•] def
= let z = ref (ref 0) in • (λy.z := y); if !!z == 1 then Ω else()

can discriminate them.

8 / 38

Disclosure of Locations (II/II)

λf.let x = ref0 in fx; x := 1

is not equivalent to

λf.let x = ref0 in fx; x := 2

 The reference bounded to x is disclosed to the context.

 It can look inside afterward to see what is stored.

C [•] def
= let z = ref (ref 0) in • (λy.z := y); if !!z == 1 then Ω else()

can discriminate them.

8 / 38

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

 Quantification over any contexts and heaps.

Nominal Game Semantics (Murawski & Tzevelekos, LICS’11)

 Fully-abstract for RefML
 Trace representation (Laird, ICALP’07)
 automata-based interpretation: Algorithmic Game Semantics.

Kripke Logical Relations

 World as heap-invariants (Pitts & Stark)
 Evolution of invariants (Ahmed, Dreyer, Neis & Birkedal).

Bisimulations

 Environmental Bisimulations (Pierce & Sumii, Koutavas, Wand)
 Open Bisimulations (Lassen, Levy, Stovring).
 Parametric Bisimulations (Hur, Dreyer & Vafeiadis).

9 / 38

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

 Quantification over any contexts and heaps.

Nominal Game Semantics (Murawski & Tzevelekos, LICS’11)

 Fully-abstract for RefML
 Trace representation (Laird, ICALP’07)
 automata-based interpretation: Algorithmic Game Semantics.

Kripke Logical Relations

 World as heap-invariants (Pitts & Stark)
 Evolution of invariants (Ahmed, Dreyer, Neis & Birkedal).

Bisimulations

 Environmental Bisimulations (Pierce & Sumii, Koutavas, Wand)
 Open Bisimulations (Lassen, Levy, Stovring).
 Parametric Bisimulations (Hur, Dreyer & Vafeiadis).

9 / 38

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

 Quantification over any contexts and heaps.

Nominal Game Semantics (Murawski & Tzevelekos, LICS’11)

 Fully-abstract for RefML
 Trace representation (Laird, ICALP’07)
 automata-based interpretation: Algorithmic Game Semantics.

Kripke Logical Relations

 World as heap-invariants (Pitts & Stark)
 Evolution of invariants (Ahmed, Dreyer, Neis & Birkedal).

Bisimulations

 Environmental Bisimulations (Pierce & Sumii, Koutavas, Wand)
 Open Bisimulations (Lassen, Levy, Stovring).
 Parametric Bisimulations (Hur, Dreyer & Vafeiadis).

9 / 38

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

 Quantification over any contexts and heaps.

Nominal Game Semantics (Murawski & Tzevelekos, LICS’11)

 Fully-abstract for RefML
 Trace representation (Laird, ICALP’07)
 automata-based interpretation: Algorithmic Game Semantics.

Kripke Logical Relations

 World as heap-invariants (Pitts & Stark)
 Evolution of invariants (Ahmed, Dreyer, Neis & Birkedal).

Bisimulations

 Environmental Bisimulations (Pierce & Sumii, Koutavas, Wand)
 Open Bisimulations (Lassen, Levy, Stovring).
 Parametric Bisimulations (Hur, Dreyer & Vafeiadis).

9 / 38

The Ultimate Goal of this Thesis

Formalize proofs of equivalence of programs:
 in a Proof Assistant based on Dependent Type Theory (Coq),
 abstracting over bureaucracy details (step-indexing, evolution of

worlds,...).

Model-check equivalence of programs:
 Only need to give precise enough invariants on heaps and their

evolution w.r.t. control flow (i.e. worlds),
 Model-check a formula, representing the equivalence of programs, with

such worlds.

Decide equivalence of programs:
 undecidable in general, even without recursion and with bounded

integers (Murawski & Tzevelekos)
 but for fragments of the language
 by generating such worlds,
 need completeness of our approach.

10 / 38

The Ultimate Goal of this Thesis

Formalize proofs of equivalence of programs:
 in a Proof Assistant based on Dependent Type Theory (Coq),
 abstracting over bureaucracy details (step-indexing, evolution of

worlds,...).

Model-check equivalence of programs:
 Only need to give precise enough invariants on heaps and their

evolution w.r.t. control flow (i.e. worlds),
 Model-check a formula, representing the equivalence of programs, with

such worlds.

Decide equivalence of programs:
 undecidable in general, even without recursion and with bounded

integers (Murawski & Tzevelekos)
 but for fragments of the language
 by generating such worlds,
 need completeness of our approach.

10 / 38

The Ultimate Goal of this Thesis

Formalize proofs of equivalence of programs:
 in a Proof Assistant based on Dependent Type Theory (Coq),
 abstracting over bureaucracy details (step-indexing, evolution of

worlds,...).

Model-check equivalence of programs:
 Only need to give precise enough invariants on heaps and their

evolution w.r.t. control flow (i.e. worlds),
 Model-check a formula, representing the equivalence of programs, with

such worlds.

Decide equivalence of programs:
 undecidable in general, even without recursion and with bounded

integers (Murawski & Tzevelekos)
 but for fragments of the language
 by generating such worlds,
 need completeness of our approach.

10 / 38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:

Step-indexing (Appel & McAlester, Ahmed)

 Necessary to break circularity in definitions,
 But “pollutes” the proof with tedious details.

Solution: use modality . to abstract over it.

 Using Gödel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

Problem: extend this solution to Type Theory

 Guarded Recursive Types in Topos of Tree (Birkedal et al.).

Our solution:
Generic extension of Martin-Löf Type Theory via presheaf translation

Could be useful to other problems:

 Reasoning on binding and substitution (HOAS, Nominal Logic),
 Kripke semantics over worlds.

11 / 38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:

Step-indexing (Appel & McAlester, Ahmed)

 Necessary to break circularity in definitions,
 But “pollutes” the proof with tedious details.

Solution: use modality . to abstract over it.

 Using Gödel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

Problem: extend this solution to Type Theory

 Guarded Recursive Types in Topos of Tree (Birkedal et al.).

Our solution:
Generic extension of Martin-Löf Type Theory via presheaf translation

Could be useful to other problems:

 Reasoning on binding and substitution (HOAS, Nominal Logic),
 Kripke semantics over worlds.

11 / 38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:

Step-indexing (Appel & McAlester, Ahmed)

 Necessary to break circularity in definitions,
 But “pollutes” the proof with tedious details.

Solution: use modality . to abstract over it.

 Using Gödel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

Problem: extend this solution to Type Theory

 Guarded Recursive Types in Topos of Tree (Birkedal et al.).

Our solution:
Generic extension of Martin-Löf Type Theory via presheaf translation

Could be useful to other problems:

 Reasoning on binding and substitution (HOAS, Nominal Logic),
 Kripke semantics over worlds.

11 / 38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:

Step-indexing (Appel & McAlester, Ahmed)

 Necessary to break circularity in definitions,
 But “pollutes” the proof with tedious details.

Solution: use modality . to abstract over it.

 Using Gödel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

Problem: extend this solution to Type Theory

 Guarded Recursive Types in Topos of Tree (Birkedal et al.).

Our solution:
Generic extension of Martin-Löf Type Theory via presheaf translation

Could be useful to other problems:

 Reasoning on binding and substitution (HOAS, Nominal Logic),
 Kripke semantics over worlds.

11 / 38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:

Step-indexing (Appel & McAlester, Ahmed)

 Necessary to break circularity in definitions,
 But “pollutes” the proof with tedious details.

Solution: use modality . to abstract over it.

 Using Gödel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

Problem: extend this solution to Type Theory

 Guarded Recursive Types in Topos of Tree (Birkedal et al.).

Our solution:
Generic extension of Martin-Löf Type Theory via presheaf translation

Could be useful to other problems:

 Reasoning on binding and substitution (HOAS, Nominal Logic),
 Kripke semantics over worlds.

11 / 38

Model-Check Equivalence of Programs
Soundness of Temporal Logical Relations

Let ` M1,M2 : τ two non-recursive terms:

Generate automatically a formula EJτK(M1,M2) in a logic with:

 (branching time) temporal modalities �,X, . . .,
 heap constraints, ex: ` ↪→ v ∧ v = 3.

Kripke Semantics: w |=A ϕ
 w : current invariant ⇒ meaning to heap constraints
 A: fixed transition system ⇒ meaning to temporal modalities.

Soundness: If there exists a transition system A s.t.
w0 |=A EJτK(M1,M2) then M1,M2 are contextually equivalent.

Model-checking: taking A and w , automatically check that
w |=A EJτK(M1,M2)

 Using SMT-solvers ⇒ only possible with bounded heaps in w .

12 / 38

Model-Check Equivalence of Programs
Soundness of Temporal Logical Relations

Let ` M1,M2 : τ two non-recursive terms:

Generate automatically a formula EJτK(M1,M2) in a logic with:

 (branching time) temporal modalities �,X, . . .,
 heap constraints, ex: ` ↪→ v ∧ v = 3.

Kripke Semantics: w |=A ϕ
 w : current invariant ⇒ meaning to heap constraints
 A: fixed transition system ⇒ meaning to temporal modalities.

Soundness: If there exists a transition system A s.t.
w0 |=A EJτK(M1,M2) then M1,M2 are contextually equivalent.

Model-checking: taking A and w , automatically check that
w |=A EJτK(M1,M2)

 Using SMT-solvers ⇒ only possible with bounded heaps in w .

12 / 38

Model-Check Equivalence of Programs
Soundness of Temporal Logical Relations

Let ` M1,M2 : τ two non-recursive terms:

Generate automatically a formula EJτK(M1,M2) in a logic with:

 (branching time) temporal modalities �,X, . . .,
 heap constraints, ex: ` ↪→ v ∧ v = 3.

Kripke Semantics: w |=A ϕ
 w : current invariant ⇒ meaning to heap constraints
 A: fixed transition system ⇒ meaning to temporal modalities.

Soundness: If there exists a transition system A s.t.
w0 |=A EJτK(M1,M2) then M1,M2 are contextually equivalent.

Model-checking: taking A and w , automatically check that
w |=A EJτK(M1,M2)

 Using SMT-solvers ⇒ only possible with bounded heaps in w .

12 / 38

Model-Check Equivalence of Programs
Soundness of Temporal Logical Relations

Let ` M1,M2 : τ two non-recursive terms:

Generate automatically a formula EJτK(M1,M2) in a logic with:

 (branching time) temporal modalities �,X, . . .,
 heap constraints, ex: ` ↪→ v ∧ v = 3.

Kripke Semantics: w |=A ϕ
 w : current invariant ⇒ meaning to heap constraints
 A: fixed transition system ⇒ meaning to temporal modalities.

Soundness: If there exists a transition system A s.t.
w0 |=A EJτK(M1,M2) then M1,M2 are contextually equivalent.

Model-checking: taking A and w , automatically check that
w |=A EJτK(M1,M2)

 Using SMT-solvers ⇒ only possible with bounded heaps in w .

12 / 38

Decide Equivalence of Programs
Completeness of Temporal Logical Relations

Completeness:

If M1,M2 are contextually equivalent then there exists a transition
system A s.t. w0 |=A EJτK(M1,M2).

Generate automatically the transition system A s.t.
w0 |=A EJτK(M1,M2) iff M1 'ctx M2.

For purely functional terms:

 No heap-invariants needed,
 A : trivial single-state transition system.

Possible generalization of results from Algorithmic game semantics ?

 Bounded heaps hypothesis rather than type restriction.

13 / 38

Decide Equivalence of Programs
Completeness of Temporal Logical Relations

Completeness:

If M1,M2 are contextually equivalent then there exists a transition
system A s.t. w0 |=A EJτK(M1,M2).

Generate automatically the transition system A s.t.
w0 |=A EJτK(M1,M2) iff M1 'ctx M2.

For purely functional terms:

 No heap-invariants needed,
 A : trivial single-state transition system.

Possible generalization of results from Algorithmic game semantics ?

 Bounded heaps hypothesis rather than type restriction.

13 / 38

Decide Equivalence of Programs
Completeness of Temporal Logical Relations

Completeness:

If M1,M2 are contextually equivalent then there exists a transition
system A s.t. w0 |=A EJτK(M1,M2).

Generate automatically the transition system A s.t.
w0 |=A EJτK(M1,M2) iff M1 'ctx M2.

For purely functional terms:

 No heap-invariants needed,
 A : trivial single-state transition system.

Possible generalization of results from Algorithmic game semantics ?

 Bounded heaps hypothesis rather than type restriction.

13 / 38

Decide Equivalence of Programs
Completeness of Temporal Logical Relations

Completeness:

If M1,M2 are contextually equivalent then there exists a transition
system A s.t. w0 |=A EJτK(M1,M2).

Generate automatically the transition system A s.t.
w0 |=A EJτK(M1,M2) iff M1 'ctx M2.

For purely functional terms:

 No heap-invariants needed,
 A : trivial single-state transition system.

Possible generalization of results from Algorithmic game semantics ?

 Bounded heaps hypothesis rather than type restriction.

13 / 38

Soundness and Completeness: A long road

Contextual Equivalence
Γ ` M1 'ctx M2 : τ

Game Semantics
JΓ ` M1 : τK = JΓ ` M2 : τK

Trace Semantics
[Γ ` M1 : τ] = [Γ ` M2 : τ]

Concrete Logical Relations
(M1,M2) ∈ V JτKe w

Temporal Logical Relations
w |=A EJτK(M1,M2)

14 / 38

Soundness and Completeness: A long road

Contextual Equivalence
Γ ` M1 'ctx M2 : τ

Game Semantics
JΓ ` M1 : τK = JΓ ` M2 : τK

Trace Semantics
[Γ ` M1 : τ] = [Γ ` M2 : τ]

Concrete Logical Relations
(M1,M2) ∈ V JτKe w

Temporal Logical Relations
w |=A EJτK(M1,M2)

Nominal Game Semantics

 Murawski & Tzevelekos
(LICS’11)

 Fully-abstract Intentional model
of RefML,

 No need of extensional quotient,

 Strategies as Nominal Sets over
Locations.

15 / 38

Soundness and Completeness: A long road

Contextual Equivalence
Γ ` M1 'ctx M2 : τ

Game Semantics
JΓ ` M1 : τK = JΓ ` M2 : τK

Trace Semantics
[Γ ` M1 : τ] = [Γ ` M2 : τ]

Concrete Logical Relations
(M1,M2) ∈ V JτKe w

Temporal Logical Relations
w |=A EJτK(M1,M2)

Operational Nominal Game Seman-
tics:

 trace representation of
interactions between a term and
contexts,

 generated by an interactive
reduction,

 a categorical structure on
traces: closed-Freyd category,

 a formal link with Nominal
Game Semantics,

 a treatment of visibility and
ground references.

16 / 38

Soundness and Completeness: A long road

Contextual Equivalence
Γ ` M1 'ctx M2 : τ

Game Semantics
JΓ ` M1 : τK = JΓ ` M2 : τK

Trace Semantics
[Γ ` M1 : τ] = [Γ ` M2 : τ]

Concrete Logical Relations
(M1,M2) ∈ V JτKe w

Temporal Logical Relations
w |=A EJτK(M1,M2)

Concrete Logical Relations

 avoid any quantification over
complex elements in the
definition,

 soundness and completeness via
Operational Nominal Game
Semantics.

17 / 38

Soundness and Completeness: A long road

Contextual Equivalence
Γ ` M1 'ctx M2 : τ

Game Semantics
JΓ ` M1 : τK = JΓ ` M2 : τK

Trace Semantics
[Γ ` M1 : τ] = [Γ ` M2 : τ]

Concrete Logical Relations
(M1,M2) ∈ V JτKe w

Temporal Logical Relations
w |=A EJτK(M1,M2)

Temporal Logical Relations

 temporal modalities to reason
abstractly over worlds,

 symbolic execution to reason
abstractly over open ground
variables.

18 / 38

Extending Type Theory with
Forcing

19 / 38

First intuitions

Guarded recursive types can be seen as Presheaves

 Work on Topos of Trees by Birkedal et al.

Forcing Models

 Introduce by Cohen to build a model negating the Continuum
Hypothesis

 Restatment of Lawvere and Tierney in terms of topos of (pre)sheafs.

Computational meaning of Forcing

 Classical realizability by Krivine,
 Syntactic Forcing translations of proofs by Miquel,
 Computational interpretation of proofs of continuity, joint work with

Coquand.

20 / 38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS’11)

Internalization of Presheaf Models in Martin-Löf Type Theory.

Allow to extend syntactically MLTT with new principles.

Keep good properties of the theory:

 Consistency,
 Canonicity,
 Decidability of the Type-Checking

Impletementation for Coq (with proof-irrelevance in conversion).

21 / 38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS’11)

Internalization of Presheaf Models in Martin-Löf Type Theory.

Allow to extend syntactically MLTT with new principles.

Keep good properties of the theory:

 Consistency,
 Canonicity,
 Decidability of the Type-Checking

Impletementation for Coq (with proof-irrelevance in conversion).

21 / 38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS’11)

Internalization of Presheaf Models in Martin-Löf Type Theory.

Allow to extend syntactically MLTT with new principles.

Keep good properties of the theory:

 Consistency,
 Canonicity,
 Decidability of the Type-Checking

Impletementation for Coq (with proof-irrelevance in conversion).

21 / 38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS’11)

Internalization of Presheaf Models in Martin-Löf Type Theory.

Allow to extend syntactically MLTT with new principles.

Keep good properties of the theory:

 Consistency,
 Canonicity,
 Decidability of the Type-Checking

Impletementation for Coq (with proof-irrelevance in conversion).

21 / 38

Presheaf Translation

Extended Theory

Ground Theory

Ground TheoryGround Theory

[]

p

2

[]p3
[]p1

θp1→p2
θp2→p3

22 / 38

Presheaf Translation

Extended Theory

Ground Theory

Ground TheoryGround Theory

[]p

2

[]p3
[]p1

θp1→p2
θp2→p3

22 / 38

Presheaf Translation

Extended Theory

Ground Theory Ground TheoryGround Theory

[]p2

[]p3
[]p1

θp1→p2
θp2→p3

22 / 38

Presheaf Translation

Extended Theory

Ground Theory Ground TheoryGround Theory

[]p2

[]p3
[]p1

θp1→p2
θp2→p3

22 / 38

Focus: Translation of the Dependent Product

JΠx : T .UKσp is defined as

{f :

Πq : Pp.Πx : JT Kσq .JUKσ·(x ,T ,q)
q

| commΠ(f ,T ,U, p)}

 Like p T ⇒ U is usually defined as

∀q ≤ p.(q T)⇒ (q U)

commΠ(f ,T ,U, p) enforces f to satisfy

JT Kσp
fp //

θσ,Tp→q

��

JUKσp i

θσ,Up→q

��
JT Kσq fq

// JUKσq

23 / 38

Focus: Translation of the Dependent Product

JΠx : T .UKσp is defined as

{f :

Πq : Pp.Πx : JT Kσq .JUKσ·(x ,T ,q)
q

| commΠ(f ,T ,U, p)}

 Like p T ⇒ U is usually defined as

∀q ≤ p.(q T)⇒ (q U)

commΠ(f ,T ,U, p) enforces f to satisfy

JT Kσp
fp //

θσ,Tp→q

��

JUKσp i

θσ,Up→q

��
JT Kσq fq

// JUKσq

23 / 38

Focus: Translation of the Dependent Product

JΠx : T .UKσp is defined as

{f : Πq : Pp.Πx : JT Kσq .JUKσ·(x ,T ,q)
q | commΠ(f ,T ,U, p)}

 Like p T ⇒ U is usually defined as

∀q ≤ p.(q T)⇒ (q U)

commΠ(f ,T ,U, p) enforces f to satisfy

JT Kσp
fp //

θσ,Tp→q

��

JUKσp i

θσ,Up→q

��
JT Kσq fq

// JUKσq

23 / 38

Forcing Layer

MLTTF : extend MLTT with new constants `F c1 : T1, . . . cn : Tn

 ck does not appear in Tj for j ≤ k.

F []p extends the translation []p to MLTTF
 F [ci]p is provided.

Check that p : Pp ` F [ci]p : FJTiKp, then:

Theorem

If Γ `F M : T, then F [Γ]σ ` F [M]σp : FJT Kσp .

24 / 38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat,≤)

Guard on types: . : U → U
Fixpoints on univers: fix : ΠT : U .(.T → T)→ T

fold,unfold, . . .

Relation with contractive maps by Birkedal & Mogelberg (LICS’13)

Impletementation in Coq:

F [.]σp
def
= λq : Natp.λT : JUKσq .

(λr : Natq.match r with

| 0 => Unit
| Sr ′ => (π1T)r ′

, λr : Natq.λt : Natr .λx : Ur .match t with

| 0 => unit
| St ′ => (π2T) (Pred r) t ′ x)

25 / 38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat,≤)

Guard on types: . : U → U
Fixpoints on univers: fix : ΠT : U .(.T → T)→ T

fold, unfold, . . .

Relation with contractive maps by Birkedal & Mogelberg (LICS’13)

Impletementation in Coq:

F [.]σp
def
= λq : Natp.λT : JUKσq .

(λr : Natq.match r with

| 0 => Unit
| Sr ′ => (π1T)r ′

, λr : Natq.λt : Natr .λx : Ur .match t with

| 0 => unit
| St ′ => (π2T) (Pred r) t ′ x)

25 / 38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat,≤)

Guard on types: . : U → U
Fixpoints on univers: fix : ΠT : U .(.T → T)→ T

fold, unfold, . . .

Relation with contractive maps by Birkedal & Mogelberg (LICS’13)

Impletementation in Coq:

F [.]σp
def
= λq : Natp.λT : JUKσq .

(λr : Natq.match r with

| 0 => Unit
| Sr ′ => (π1T)r ′

, λr : Natq.λt : Natr .λx : Ur .match t with

| 0 => unit
| St ′ => (π2T) (Pred r) t ′ x)

25 / 38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat,≤)

Guard on types: . : U → U
Fixpoints on univers: fix : ΠT : U .(.T → T)→ T

fold, unfold, . . .

Relation with contractive maps by Birkedal & Mogelberg (LICS’13)

Impletementation in Coq:

F [.]σp
def
= λq : Natp.λT : JUKσq .

(λr : Natq.match r with

| 0 => Unit
| Sr ′ => (π1T)r ′

, λr : Natq.λt : Natr .λx : Ur .match t with

| 0 => unit
| St ′ => (π2T) (Pred r) t ′ x)

25 / 38

Coherence issues

Intentional type theory : Distinction betwen conversion (≡) and
propositional equality (=T).

Coherence issues arise:

 JT {M/x}Kp 6≡ JT Kp
{

[M]p/x
}

,
 Link with coherence problems with categorical models of Dependent

Types (work of Curien, Hofmann).

but we can build a term of type JT {M/x}Kp =U JT Kp
{

[M]p/x
}

,

 Use it to perform rewriting in the translation,
 Need explicit coercions of conversion.

26 / 38

Coherence issues

Intentional type theory : Distinction betwen conversion (≡) and
propositional equality (=T).

Coherence issues arise:

 JT {M/x}Kp 6≡ JT Kp
{

[M]p/x
}

,
 Link with coherence problems with categorical models of Dependent

Types (work of Curien, Hofmann).

but we can build a term of type JT {M/x}Kp =U JT Kp
{

[M]p/x
}

,

 Use it to perform rewriting in the translation,
 Need explicit coercions of conversion.

26 / 38

Coherence issues

Intentional type theory : Distinction betwen conversion (≡) and
propositional equality (=T).

Coherence issues arise:

 JT {M/x}Kp 6≡ JT Kp
{

[M]p/x
}

,
 Link with coherence problems with categorical models of Dependent

Types (work of Curien, Hofmann).

but we can build a term of type JT {M/x}Kp =U JT Kp
{

[M]p/x
}

,

 Use it to perform rewriting in the translation,
 Need explicit coercions of conversion.

26 / 38

Towards automatizable proofs of
equivalence

27 / 38

Concrete Logical Relations

Game Semantics
JΓ ` M1 : τK = JΓ ` M2 : τK

Trace Semantics
[Γ ` M1 : τ] = [Γ ` M2 : τ]

Concrete Logical Relations
(M1,M2) ∈ V JτKe w

Temporal Logical Relations
w |= EJτK(M1,M2)

28 / 38

Logical Relations

Binary relations E JτK ,V JτK on closed terms and values

 inductively defined on types.

V JIntK def
= {(n, n) | n ∈ Z}

V Jτ → σK def
= {(λx1.M1, λx2.M2) | ∀(v1, v2) ∈ V JτK .

((λx1.M1)v1, (λx2.M2)v2) ∈ E JσK}

E JτK def
= {(M1,M2) | (M1 ⇑ ∧M2 ⇑)

∨((M1 7→∗ v1) ∧ (M2 7→∗ v2) ∧ (v1, v2) ∈ V JτK}

29 / 38

Kripke Logical Relations (Pitts & Stark, Ahmed, Birkedal, Dreyer, ...)

Extension to languages with references.

 Need worlds, i.e. invariants on heaps,

 which can evolve w.r.t. control flow of programs

 Parametrize the definition of logical relations with such worlds.

E JτKw def
=

{
(M1,M2) | ∀(h1, h2) : w .

(
(M1, h1) ⇑ ∧(M2, h2) ⇑

)
∨
(
((M1, h1) 7→∗ (v1, h

′
1)) ∧ ((M2, h2) 7→∗ (v2, h

′
2))

∃w ′ w w .(h′1, h
′
2) : w ′ ∧ (v1, v2) ∈ V JτKw ′

)}

30 / 38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

Quantification over applicative contexts in E JτKw
(Biorthogonality)
 Direct-style definition.

Quantification over functional values in V Jτ → σKw
 When τ is functional,
 Use fresh free variables instead.

Quantification over functional values in V Jref(τ → σ)Kw
 Deal with disclosed locations externally, in the definition of (h1, h2) : w .
 Remove the circularity between logical relations and worlds.

Quantification over new disjoint invariants in w ′ w w
 Use a fixed transition system instead.

Give rise to our definition of “Concrete Logical Relations”

31 / 38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

Quantification over applicative contexts in E JτKw
(Biorthogonality)
 Direct-style definition.

Quantification over functional values in V Jτ → σKw
 When τ is functional,
 Use fresh free variables instead.

Quantification over functional values in V Jref(τ → σ)Kw
 Deal with disclosed locations externally, in the definition of (h1, h2) : w .
 Remove the circularity between logical relations and worlds.

Quantification over new disjoint invariants in w ′ w w
 Use a fixed transition system instead.

Give rise to our definition of “Concrete Logical Relations”

31 / 38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

Quantification over applicative contexts in E JτKw
(Biorthogonality)
 Direct-style definition.

Quantification over functional values in V Jτ → σKw
 When τ is functional,
 Use fresh free variables instead.

Quantification over functional values in V Jref(τ → σ)Kw
 Deal with disclosed locations externally, in the definition of (h1, h2) : w .
 Remove the circularity between logical relations and worlds.

Quantification over new disjoint invariants in w ′ w w
 Use a fixed transition system instead.

Give rise to our definition of “Concrete Logical Relations”

31 / 38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

Quantification over applicative contexts in E JτKw
(Biorthogonality)
 Direct-style definition.

Quantification over functional values in V Jτ → σKw
 When τ is functional,
 Use fresh free variables instead.

Quantification over functional values in V Jref(τ → σ)Kw
 Deal with disclosed locations externally, in the definition of (h1, h2) : w .
 Remove the circularity between logical relations and worlds.

Quantification over new disjoint invariants in w ′ w w
 Use a fixed transition system instead.

Give rise to our definition of “Concrete Logical Relations”

31 / 38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

Quantification over applicative contexts in E JτKw
(Biorthogonality)
 Direct-style definition.

Quantification over functional values in V Jτ → σKw
 When τ is functional,
 Use fresh free variables instead.

Quantification over functional values in V Jref(τ → σ)Kw
 Deal with disclosed locations externally, in the definition of (h1, h2) : w .
 Remove the circularity between logical relations and worlds.

Quantification over new disjoint invariants in w ′ w w
 Use a fixed transition system instead.

Give rise to our definition of “Concrete Logical Relations”

31 / 38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

Quantification over applicative contexts in E JτKw
(Biorthogonality)
 Direct-style definition.

Quantification over functional values in V Jτ → σKw
 When τ is functional,
 Use fresh free variables instead.

Quantification over functional values in V Jref(τ → σ)Kw
 Deal with disclosed locations externally, in the definition of (h1, h2) : w .
 Remove the circularity between logical relations and worlds.

Quantification over new disjoint invariants in w ′ w w
 Use a fixed transition system instead.

Give rise to our definition of “Concrete Logical Relations”

31 / 38

Concrete Logical Relations

All what we need to reason on equivalence:

 A transition system representing the control flow between the term and
its environment (i.e. contexts)

 Private transitions: only the term can take them,
 Public transitions: execution to a value, so the environment can take

them (well-bracketing),
 Labels on transitions: heap-invariants, disclosure process of locations.

Reason on open terms with free functional variables

 Make the full control flow apparent in the operational reduction.

32 / 38

Concrete Logical Relations

All what we need to reason on equivalence:

 A transition system representing the control flow between the term and
its environment (i.e. contexts)

 Private transitions: only the term can take them,
 Public transitions: execution to a value, so the environment can take

them (well-bracketing),
 Labels on transitions: heap-invariants, disclosure process of locations.

Reason on open terms with free functional variables

 Make the full control flow apparent in the operational reduction.

32 / 38

Concrete Logical Relations

All what we need to reason on equivalence:

 A transition system representing the control flow between the term and
its environment (i.e. contexts)

 Private transitions: only the term can take them,

 Public transitions: execution to a value, so the environment can take
them (well-bracketing),

 Labels on transitions: heap-invariants, disclosure process of locations.

Reason on open terms with free functional variables

 Make the full control flow apparent in the operational reduction.

32 / 38

Concrete Logical Relations

All what we need to reason on equivalence:

 A transition system representing the control flow between the term and
its environment (i.e. contexts)

 Private transitions: only the term can take them,
 Public transitions: execution to a value, so the environment can take

them (well-bracketing),

 Labels on transitions: heap-invariants, disclosure process of locations.

Reason on open terms with free functional variables

 Make the full control flow apparent in the operational reduction.

32 / 38

Concrete Logical Relations

All what we need to reason on equivalence:

 A transition system representing the control flow between the term and
its environment (i.e. contexts)

 Private transitions: only the term can take them,
 Public transitions: execution to a value, so the environment can take

them (well-bracketing),
 Labels on transitions: heap-invariants, disclosure process of locations.

Reason on open terms with free functional variables

 Make the full control flow apparent in the operational reduction.

32 / 38

Concrete Logical Relations

All what we need to reason on equivalence:

 A transition system representing the control flow between the term and
its environment (i.e. contexts)

 Private transitions: only the term can take them,
 Public transitions: execution to a value, so the environment can take

them (well-bracketing),
 Labels on transitions: heap-invariants, disclosure process of locations.

Reason on open terms with free functional variables

 Make the full control flow apparent in the operational reduction.

32 / 38

Soundness and Completeness

Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

Correspondence with Trace semantics.

Soundness:

 Introduce Kripke trace semantics,
 Perform “surgery” on traces.

Completeness:

 No more biorthogonality,
 Need “adequate” LTS: dual of Kripke Logical Relations,
 Show that it always exists: exhaustive worlds.

33 / 38

Soundness and Completeness

Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

Correspondence with Trace semantics.

Soundness:

 Introduce Kripke trace semantics,
 Perform “surgery” on traces.

Completeness:

 No more biorthogonality,
 Need “adequate” LTS: dual of Kripke Logical Relations,
 Show that it always exists: exhaustive worlds.

33 / 38

Soundness and Completeness

Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

Correspondence with Trace semantics.

Soundness:

 Introduce Kripke trace semantics,
 Perform “surgery” on traces.

Completeness:

 No more biorthogonality,
 Need “adequate” LTS: dual of Kripke Logical Relations,
 Show that it always exists: exhaustive worlds.

33 / 38

Soundness and Completeness

Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

Correspondence with Trace semantics.

Soundness:

 Introduce Kripke trace semantics,
 Perform “surgery” on traces.

Completeness:

 No more biorthogonality,
 Need “adequate” LTS: dual of Kripke Logical Relations,
 Show that it always exists: exhaustive worlds.

33 / 38

Callback with lock

Mcbl
1 = C [f(); x :=!x + 1]

Mcbl
2 = C [let n =!x in f(); x := n + 1] where

C = let b = ref true in let x = ref 0 in
〈λf.if !b then b := false; • ; b := true else (), λ .!x〉

>V {`x 7→i 0, `b 7→i true}

{`x 7→i n}V
{`x 7→i n + 1,
`b 7→i true}

{`x 7→i n}V
{`x 7→i n, `b 7→i false}

{`x 7→i n}V
{`x 7→i n + 1,
`b 7→i true}

34 / 38

Callback with lock

Mcbl
1 = C [f(); x :=!x + 1]

Mcbl
2 = C [let n =!x in f(); x := n + 1] where

C = let b = ref true in let x = ref 0 in
〈λf.if !b then b := false; • ; b := true else (), λ .!x〉

>V {`x 7→i 0, `b 7→i true}

{`x 7→i n}V
{`x 7→i n + 1,
`b 7→i true}

{`x 7→i n}V
{`x 7→i n, `b 7→i false}

{`x 7→i n}V
{`x 7→i n + 1,
`b 7→i true}

34 / 38

Automatically generated temporal formula

EJτK(Mclb
1 ,Mcbl

2) is equal to

HN0.(N1`2.(N1`1.(N2`4.(N2`3.(X((`2 7→1 0) ∧ (`1 7→1 true) ∧ (`4 7→2 0) ∧ (`3 7→2 true)∧
((�(HN5.(∀x6, x7, x8, x9.(((`2 7→1 x6) ∧ (`1 7→1 x7) ∧ (`4 7→2 x8) ∧ (`3 7→2 x9))⇒
((X(((x7 = true) ∧ (x9 = true))⇒ ((`2 7→1 x6) ∧ (`1 7→1 false) ∧ (`4 7→2 x8) ∧ (`3 7→2 false)∧
(�pub(∀x10, x11, x13, x14.(((`2 7→1 x10) ∧ (`1 7→1 x11) ∧ (`4 7→2 x13) ∧ (`3 7→2 x14))⇒
(X(∀x12, x15.(((x12 = x10 + 1) ∧ (x15 = x8 + 1))⇒ ((`2 7→1 x12) ∧ (`1 7→1 true)∧
(`4 7→2 x15) ∧ (`3 7→2 true) ∧ (Ppub(N5)))))))))))) ∧ (not((x7 = true) ∧ (x9 = false)))∧
(not((x7 = false) ∧ (x9 = true))) ∧ (X(((x7 = false) ∧ (x9 = false))⇒
((`2 7→1 x6) ∧ (`1 7→1 x7) ∧ (`4 7→2 x8) ∧ (`3 7→2 x9) ∧ (Ppub(N5))))))))))
∧(�(HN16.(∀[x17, x18, x19, x20].(((`2 7→1 x17) ∧ (`1 7→1 x18) ∧ (`4 7→2 x19) ∧ (`3 7→2 x20))⇒
(X((`2 7→1 x17) ∧ (`1 7→1 x18) ∧ (`4 7→2 x19) ∧ (`3 7→2 x20) ∧ (x17 = x19) ∧ (Ppub(N16)))))))))
∧(Ppub(N0))))))))

35 / 38

Translation to SMT-LIB

(assert (exists ((s21 Int)(h22 Heap)(h23 Heap)(l2 Int)(l1 Int)) (and (not (= l1 l2))

(exists ((l4 Int)(l3 Int)) (and (not (= l3 l4)) (exists ((s25 Int)(h26 Heap)(h27 Heap)(S28 LocSpan))

(and (TransPriv s21 s25 h22 h23 h26 h27 S28) (and (= (select h26 l2) 0) (= (select h26 l1) 0)

(= (select h27 l4) 0) (= (select h27 l3) 0) (and (forall ((s29 Int)(h30 Heap)(h31 Heap)(S32 LocSpan))

(=> (TransPrivT s25 s29 h26 h27 h30 h31 S32) (forall ((x6 Int)(x7 Int)(x8 Int)(x9 Int))

(=> (and (= (select h30 l2) x6) (= (select h30 l1) x7) (= (select h31 l4) x8) (= (select h31 l3) x9))

(and (exists ((s33 Int)(h34 Heap)(h35 Heap)(S36 LocSpan)) (and (TransPriv s29 s33 h30 h31 h34 h35 S36)

(=> (and (= x7 0) (= x9 0)) (and (= (select h34 l2) x6) (= (select h34 l1) 1) (= (select h35 l4) x8)

(= (select h35 l3) 1) (forall ((s37 Int)(h38 Heap)(h39 Heap)(S40 LocSpan))

(=> (TransPubT s33 s37 h34 h35 h38 h39 S40) (forall ((x10 Int)(x11 Int)(x13 Int)(x14 Int))

(=> (and (= (select h38 l2) x10) (= (select h38 l1) x11) (= (select h39 l4) x13) (= (select h39 l3) x14))

(exists ((s41 Int)(h42 Heap)(h43 Heap)(S44 LocSpan)) (and (TransPriv s37 s41 h38 h39 h42 h43 S44)

(forall ((x12 Int)(x15 Int)) (=> (and (= x12 (+ x10 1)) (= x15 (+ x8 1))) (and (= (select h42 l2) x12)

(= (select h42 l1) 0) (= (select h43 l4) x15) (= (select h43 l3) 0)

(TransPub s29 s41 h30 h31 h42 h43 S44))))))))))))))

(not (and (= x7 0) (= x9 1))) (not (and (= x7 1) (= x9 0)))

(exists ((s45 Int)(h46 Heap)(h47 Heap)(S48 LocSpan)) (and (TransPriv s29 s45 h30 h31 h46 h47 S48)

(=> (and (= x7 1) (= x9 1)) (and (= (select h46 l2) x6) (= (select h46 l1) x7) (= (select h47 l4) x8)

(= (select h47 l3) x9) (TransPub s29 s45 h30 h31 h46 h47 S48))))))))))

(forall ((s49 Int)(h50 Heap)(h51 Heap)(S52 LocSpan))(=> (TransPrivT s25 s49 h26 h27 h50 h51 S52)

(forall ((x17 Int)(x18 Int)(x19 Int)(x20 Int)) (=> (and (= (select h50 l2) x17) (= (select h50 l1) x18)

(= (select h51 l4) x19) (= (select h51 l3) x20)) (exists ((s53 Int)(h54 Heap)(h55 Heap)(S56 LocSpan))

(and (TransPriv s49 s53 h50 h51 h54 h55 S56) (and (= (select h54 l2) x17) (= (select h54 l1) x18)

(= (select h55 l4) x19) (= (select h55 l3) x20) (= x17 x19) (TransPub s49 s53 h50 h51 h54 h55 S56)))))))))

(TransPub s21 s25 h22 h23 h26 h27 S28)))))))))

(check-sat)

36 / 38

What’s Next?

Extend the presheaves translation with forcing conditions as
categories

 Useful for an implementation of a Nominal Dependent Type Theory ?

Reason on recursive programs:

 Combination with Higher-order Recursive Schemes (Ong et al.) ?

Decidability results:

 Semi-decidability: generate worlds,
 Full decidability: reason on adequate worlds,
 Decidability of the contextual equivalence of ν-calculus ?

Polymorphic languages ?

37 / 38

A Unified Theory ?

Kripke Logical relations with worlds as

Bisimulations over

Traces generated by

Game Semantics as

Presheaves over

LTS

 Open maps (Joyal, Nielsen & Winskel)

 Innocent Strategies as Presheaves (Hirchowitz & Pous)

 Transition systems over games (Levy & Staton, LICS’14)

38 / 38

