A Logical Study of Program Equivalence

Guilhem Jaber

Ecole des Mines de Nantes
LINA - Ascola

e |ins=

PhD Defense
Institut Henri Poincaré (Paris)
July 11th 2014

Why study the Equivalence of Programs 7

@ Specification of programs
~~ Equivalence between a program we can trust and an optimized one.

Why study the Equivalence of Programs 7

@ Specification of programs
~~ Equivalence between a program we can trust and an optimized one.

o Compiler optimizations.
~~ Towards verified compilers.

Why study the Equivalence of Programs 7

@ Specification of programs
~~ Equivalence between a program we can trust and an optimized one.

o Compiler optimizations.
~~ Towards verified compilers.

@ Representation independence of Data
~~ Parametricity, Free theorems.

Why study the Equivalence of Programs 7

Specification of programs
~~ Equivalence between a program we can trust and an optimized one.

Compiler optimizations.
~~ Towards verified compilers.

Representation independence of Data
~~ Parametricity, Free theorems.

Crucial in denotational semantics

~~ Full-abstraction result.

What kind of Equivalence 7

o Contextual Equivalence
~+ Programs seen as black boxes.

What kind of Equivalence 7

o Contextual Equivalence
~+ Programs seen as black boxes.

@ Extensional behavior of programs
~~ QObservational equivalence.

What kind of Equivalence 7

o Contextual Equivalence
~+ Programs seen as black boxes.

@ Extensional behavior of programs
~~ QObservational equivalence.

@ Depends on the language contexts are written in

~ discriminating power of contexts,
~~ from purely functional languages to assembly code.

For what kind of Language: RefML

A typed call-by-value A-calculus: (Ax:7.M)v — M{v/x}

For what kind of Language: RefML

A typed call-by-value A-calculus: (Ax:7.M)v — M{v/x}

with Integers and Booleans: if bthenOelsen+ 1

For what kind of Language: RefML

A typed call-by-value A-calculus: (Ax:7.M)v — M{v/x}

with Integers and Booleans: if bthenOelsen+ 1
with higher-order references: ref 2, ref (Ax.M)
stored in heap via locations: (refv,h) = (£, h-[£ — v])
(¢ fresh in h)
mutable: x:=Ix+1

For what kind of Language: RefML

A typed call-by-value A-calculus: (Ax:7.M)v — M{v/x}

with Integers and Booleans: if bthenOelsen+ 1
with higher-order references: ref 2, ref (Ax.M)
stored in heap via locations: (refv,h) = (£, h-[£ — v])
(¢ fresh in h)
mutable: x:=Ix+1
No pointer arithmetic: (¢4 1) is ill-typed
But equality test: l1 ==l is well-typed

For what kind of Language: RefML

A typed call-by-value A-calculus: (Ax:7.M)v — M{v/x}

with Integers and Booleans: if bthenOelsen+ 1
with higher-order references: ref 2, ref (Ax.M)
stored in heap via locations: (refv,h) = (£, h-[£ — v])
(¢ fresh in h)
mutable: x:=Ix+1
No pointer arithmetic: (¢4 1) is ill-typed
But equality test: l1 ==l is well-typed

Full recursion (via “Landin” knot).

For what kind of Language: RefML

A typed call-by-value A-calculus: (Ax:7.M)v — M{v/x}

with Integers and Booleans: if b then O elsen+ 1
with higher-order references: ref 2, ref (Ax.M)
stored in heap via locations: (refv,h) = (£, h-[£ — v])
(¢ fresh in h)
mutable: x:=Ix+1
No pointer arithmetic: (¢4 1) is ill-typed
But equality test: l1 ==l is well-typed

Full recursion (via “Landin” knot).

Contextual equivalence of My, M»:

YCYh.(C[My] I, h) <= (C[Ma] I, h)

Synchronization of Callbacks (I/II)

AM.£() is not equivalent to AE.£(); £()

Synchronization of Callbacks (I/II)

Af.£() is not equivalent to AE.£(); £()

~» Contexts can check how many time f is called.

~~ Callbacks are fully observable!

Cle] % et x =1ef0 in e (A_x:=!x+1);if !x > 1 then Q else()
can discriminate them.

Synchronization of Callbacks (I1/II)

M.(f 1)+ (f 2) is not equivalent to ML(f2)+ (£ 1)

Synchronization of Callbacks (I1/II)

M.(f 1)+ (f 2) is not equivalent to ML(f2)+ (£ 1)
~> Arguments given to callbacks must be related.

Cle] % et x =1ef0 in e (Ay.x :=1y);if !x == 1 then Q else()

can discriminate them.

Disclosure of Locations (I/I1)

Alet x = refOin 1 isequivalentto A_.1

~» The creation of the reference bounded to x is not observable by the
context.

~> |t is private to the term!

Disclosure of Locations (I1/II)

Af.let x

is not equivalent to

Af.let x

refO in fx;x:=1

refO in fx;x := 2

/38

Disclosure of Locations (I1/II)

AM.let x = refO in fx;x:=1

is not equivalent to
Af.let x = ref0O in fx;x:=2
~~ The reference bounded to x is disclosed to the context.

~+ It can look inside afterward to see what is stored.

Cle] % let z = ref (ref0) in e (Ay.z :=y);if !lz == 1 then Q else()
can discriminate them.

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

~+ Quantification over any contexts and heaps.

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

~+ Quantification over any contexts and heaps.

e Nominal Game Semantics (Murawski & Tzevelekos, LICS'11)

~> Fully-abstract for RefML
~- Trace representation (Laird, ICALP'07)
~~ automata-based interpretation: Algorithmic Game Semantics.

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

~+ Quantification over any contexts and heaps.

e Nominal Game Semantics (Murawski & Tzevelekos, LICS'11)

~> Fully-abstract for RefML
~ Trace representation (Laird, ICALP'07)
~~ automata-based interpretation: Algorithmic Game Semantics.

@ Kripke Logical Relations

~» World as heap-invariants (Pitts & Stark)
~+ Evolution of invariants (Ahmed, Dreyer, Neis & Birkedal).

How to prove equivalence of programs of RefML ?

Contextual equivalence is hard to reason on

~+ Quantification over any contexts and heaps.

e Nominal Game Semantics (Murawski & Tzevelekos, LICS'11)

~> Fully-abstract for RefML
~ Trace representation (Laird, ICALP'07)
~~ automata-based interpretation: Algorithmic Game Semantics.

@ Kripke Logical Relations

~» World as heap-invariants (Pitts & Stark)
~+ Evolution of invariants (Ahmed, Dreyer, Neis & Birkedal).

@ Bisimulations
~- Environmental Bisimulations (Pierce & Sumii, Koutavas, Wand)
~+ Open Bisimulations (Lassen, Levy, Stovring).
~ Parametric Bisimulations (Hur, Dreyer & Vafeiadis).

The Ultimate Goal of this Thesis

@ Formalize proofs of equivalence of programs:
~» in a Proof Assistant based on Dependent Type Theory (Coq),
~ abstracting over bureaucracy details (step-indexing, evolution of
worlds,...).

10/38

The Ultimate Goal of this Thesis

@ Formalize proofs of equivalence of programs:
~» in a Proof Assistant based on Dependent Type Theory (Coq),
~ abstracting over bureaucracy details (step-indexing, evolution of
worlds,...).

@ Model-check equivalence of programs:
~> Only need to give precise enough invariants on heaps and their
evolution w.r.t. control flow (i.e. worlds),
~ Model-check a formula, representing the equivalence of programs, with
such worlds.

10/38

The Ultimate Goal of this Thesis

@ Formalize proofs of equivalence of programs:
~» in a Proof Assistant based on Dependent Type Theory (Coq),
~ abstracting over bureaucracy details (step-indexing, evolution of
worlds,...).

@ Model-check equivalence of programs:
~> Only need to give precise enough invariants on heaps and their
evolution w.r.t. control flow (i.e. worlds),
~ Model-check a formula, representing the equivalence of programs, with
such worlds.

@ Decide equivalence of programs:
~» undecidable in general, even without recursion and with bounded
integers (Murawski & Tzevelekos)
but for fragments of the language
by generating such worlds,
need completeness of our approach.

$ 84

10/38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:
e Step-indexing (Appel & McAlester, Ahmed)

~ Necessary to break circularity in definitions,
~ But "pollutes” the proof with tedious details.

11/38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:
e Step-indexing (Appel & McAlester, Ahmed)

~ Necessary to break circularity in definitions,
~ But "pollutes” the proof with tedious details.

@ Solution: use modality > to abstract over it.
~~ Using Gédel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

11/38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:
e Step-indexing (Appel & McAlester, Ahmed)

~ Necessary to break circularity in definitions,
~ But "pollutes” the proof with tedious details.

@ Solution: use modality > to abstract over it.
~~ Using Gédel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

@ Problem: extend this solution to Type Theory
~- Guarded Recursive Types in Topos of Tree (Birkedal et al.).

11/38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:
e Step-indexing (Appel & McAlester, Ahmed)

~ Necessary to break circularity in definitions,
~ But "pollutes” the proof with tedious details.

@ Solution: use modality > to abstract over it.
~~ Using Gédel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

@ Problem: extend this solution to Type Theory
~- Guarded Recursive Types in Topos of Tree (Birkedal et al.).

@ Our solution:
Generic extension of Martin-Lof Type Theory via presheaf translation

11/38

Formalize Proofs of Equivalence of Programs (in MLTT)

Want to abstract over bureaucracy details:
e Step-indexing (Appel & McAlester, Ahmed)

~ Necessary to break circularity in definitions,
~ But "pollutes” the proof with tedious details.

@ Solution: use modality > to abstract over it.
~~ Using Gédel-Lob Logic (Appel, Mellies, Richards & Vouillon, Nakano).

@ Problem: extend this solution to Type Theory
~- Guarded Recursive Types in Topos of Tree (Birkedal et al.).

@ QOur solution:
Generic extension of Martin-Lof Type Theory via presheaf translation‘

@ Could be useful to other problems:

~~ Reasoning on binding and substitution (HOAS, Nominal Logic),
~~ Kripke semantics over worlds.

11/38

Model-Check Equivalence of Programs

Soundness of Temporal Logical Relations

Let = My, M, : T two non-recursive terms:

o Generate automatically a formula |E[7](M;, M) | in a logic with:

~ (branching time) temporal modalities O, X, . . .,
~~ heap constraints, ex: £ <— v Av = 3.

12/38

Model-Check Equivalence of Programs

Soundness of Temporal Logical Relations

Let = My, M, : T two non-recursive terms:

o Generate automatically a formula |E[7](M;, M) | in a logic with:

~ (branching time) temporal modalities O, X, . . .,
~+ heap constraints, ex: £ — v Av =3,

e Kripke Semantics: w =4 ¢

~~ w: current invariant = meaning to heap constraints
~ A: fixed transition system = meaning to temporal modalities.

12/38

Model-Check Equivalence of Programs

Soundness of Temporal Logical Relations

Let = My, M, : T two non-recursive terms:

o Generate automatically a formula |E[7](M;, M) | in a logic with:

~ (branching time) temporal modalities O, X, . . .,
~+ heap constraints, ex: £ — v Av =3,

e Kripke Semantics: w =4 ¢

~~ w: current invariant = meaning to heap constraints
~ A: fixed transition system = meaning to temporal modalities.

@ Soundness: If there exists a transition system A s.t.
wo =4 E[7](M1, M2) then My, M, are contextually equivalent.

12/38

Model-Check Equivalence of Programs

Soundness of Temporal Logical Relations

Let = My, M, : T two non-recursive terms:

o Generate automatically a formula |E[7](M;, M) | in a logic with:

~ (branching time) temporal modalities O, X, . . .,
~+ heap constraints, ex: £ — v Av =3,

e Kripke Semantics: w =4 ¢

~~ w: current invariant = meaning to heap constraints
~ A: fixed transition system = meaning to temporal modalities.

@ Soundness: If there exists a transition system A s.t.
wo =4 E[7](M1, M2) then My, M, are contextually equivalent.

o Model-checking: taking A and w, automatically check that
w =4 E[r](My, M2)
~> Using SMT-solvers = only possible with bounded heaps in w.

12/38

Decide Equivalence of Programs

Completeness of Temporal Logical Relations

o Completeness:

If My, My are contextually equivalent then there exists a transition
system A s.t. wy =4 E[7](M1, Ma).

13/38

Decide Equivalence of Programs

Completeness of Temporal Logical Relations

o Completeness:

If My, My are contextually equivalent then there exists a transition
system A s.t. wy =4 E[7](M1, Ma).

@ Generate automatically the transition system A s.t.
wo EA E[7](My, Mp) iff My ~cpc Mo,

13/38

Decide Equivalence of Programs

Completeness of Temporal Logical Relations

o Completeness:

If My, My are contextually equivalent then there exists a transition
system A s.t. wy =4 E[7](M1, Ma).

@ Generate automatically the transition system A s.t.
wo EA E[7](My, Mp) iff My ~cpc Mo,

e For purely functional terms:

~~ No heap-invariants needed,
~ A : trivial single-state transition system.

13/38

Decide Equivalence of Programs

Completeness of Temporal Logical Relations

o Completeness:

If My, My are contextually equivalent then there exists a transition
system A s.t. wy =4 E[7](M1, Ma).

@ Generate automatically the transition system A s.t.
wo):A E[[T]](Ml, M2) iff My >~ Mo,

e For purely functional terms:

~~ No heap-invariants needed,
~ A : trivial single-state transition system.

o Possible generalization of results from Algorithmic game semantics ?
~~ Bounded heaps hypothesis rather than type restriction.

13/38

Soundness and Completeness: A long road

e A

Contextual Equivalence
= M1 > ctx M2 - T

R

4)

Game Semantics
[TEMy:7]=[TF M;: 7]

Trace Semantics
=M :7]=[TF M: 7]

4 A

Concrete Logical Relations

(Ml,Mz) = V[[T]]e w

4 A

Temporal Logical Relations
w =a E[7] (M1, M2)

14 /38

Soundness and Completeness: A long road

4 A

Contextual Equivalence
FI—MlzctX MQZT

[
Game Semantics Nominal Game Semantics
TR R N = 35 ~» Murawski & Tzevelekos
(LICS'11)
[Trace Semantics ~+ Fully-abstract Intentional model
M :7]=[TF M;y: 7] of RefML,
) I ’ ~> No need of extensional quotient,

e N

Concrete Logical Relations ~ Strategies as Nominal Sets over
(M, Mp) € V1], w Locations.

[

e N

Temporal Logical Relations
w 4 E[r](My, M)

15/38

Soundness and Completeness: A long road

(Contextual Equivalence]
L MM ~cx My:7) Operational Nominal Game Seman-
I tics:
(Game Semantics) ~> trace representation of
[TEMy:r] =] Mo 7] interactions between a term and
~ I 7 contexts,
r) ~~ generated by an interactive

Trace Semantics

reduction,
=M :7]=[TF M: 7]

~» a categorical structure on
traces: closed-Freyd category,

Concrete Logical Relations ~ a formal link with Nominal
(M1, Mp) € V1], w Game Semantics,
I ~> a treatment of visibility and

Temporal Logical Relations ground references.

w Ea E[r] (M1, My)

16 /38

Soundness and Completeness: A long road

4 A

Contextual Equivalence
FI—MlzctX MQZT

\ J

[

4)

Game Semantics
[TEMy 7] =[TF My 7] Concrete Logical Relations

I ~> avoid any quantification over

(Trace Semantics) con.1p.I§x elements in the
M My:r]=[TF M 7] definition,
- J ~> soundness and completeness via
p I . Operational Nominal Game
Concrete Logical Relations Semantics.

(M1,M2) = V[[T]]e w

e N

Temporal Logical Relations
w 4 E[r](My, M)

17/38

Soundness and Completeness: A long road

4 A

Contextual Equivalence
FI—MlzctX MQZT

\ J

[

4)

Game Semantics
[TEMy 7] =[TF My 7]

Temporal Logical Relations

. I \ ~ temporal modalities to reason
Trace Semantics abstractly over worlds,
| [MEMyor] =T M 7]) ~~ symbolic execution to reason
I abstractly over open ground
() variables.

Concrete Logical Relations
(M, Mp) € V[r] . w

[

Temporal Logical Relations
w =a E[7] (M1, M2)

e A

18 /38

Extending Type Theory with
Forcing

First intuitions

@ Guarded recursive types can be seen as Presheaves
~ Work on Topos of Trees by Birkedal et al.

o Forcing Models
~+ Introduce by Cohen to build a model negating the Continuum
Hypothesis
~> Restatment of Lawvere and Tierney in terms of topos of (pre)sheafs.

@ Computational meaning of Forcing
~ Classical realizability by Krivine,
~» Syntactic Forcing translations of proofs by Miquel,
~~ Computational interpretation of proofs of continuity, joint work with
Coquand.

20/38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS'11)
@ Internalization of Presheaf Models in Martin-Léf Type Theory.

21/38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS'11)
@ Internalization of Presheaf Models in Martin-Léf Type Theory.

o Allow to extend syntactically MLTT with new principles.

21/38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS'11)
@ Internalization of Presheaf Models in Martin-Léf Type Theory.

o Allow to extend syntactically MLTT with new principles.

o Keep good properties of the theory:

~~ Consistency,
~~ Canonicity,
~~ Decidability of the Type-Checking

21/38

Extending Type Theory with Forcing

Joint work with Tabareau & Sozeau (LICS'11)
@ Internalization of Presheaf Models in Martin-Léf Type Theory.

o Allow to extend syntactically MLTT with new principles.

o Keep good properties of the theory:

~~ Consistency,
~~ Canonicity,
~~ Decidability of the Type-Checking

o Impletementation for Coq (with proof-irrelevance in conversion).

21/38

Presheaf Translation
‘ Extended Theory \

]

‘ Ground Theory \

22 /38

Presheaf Translation
‘ Extended Theory \

Hp

‘ Ground Theory \

22 /38

Presheaf Translation

‘ Extended Theory \

H,

‘ Ground Theory \ ‘ Ground Theory \ ‘ Ground Theory \

[—] p1 [_] P3

22 /38

Presheaf Translation

‘ Extended Theory \

H,

[—] p1 [_] P3

Ground Theory Ground Theory Ground Theory

pP1—pP2 p2—pP3

22 /38

Focus: Translation of the Dependent Product

o [Mx: T.U]j is defined as

Mg : Pp.Nx : [Tg.[U]g 79

~» Like pIF T = U is usually defined as

Vg <p.(qlF T)= (qlF V)

23/38

Focus: Translation of the Dependent Product

o [Mx: T.U]j is defined as

Mg : Pp.Nx : [Tg.[U]g 79

~» Like pIF T = U is usually defined as

Vg <p.(qlF T)= (qlF V)

e commp(f, T, U, p) enforces f to satisfy

f,
[Tl " [Ulgi
| |z,

(715 —— [l

23 /38

Focus: Translation of the Dependent Product

o [Mx: T.U]j is defined as

{f :Nq : Ppulx: [TIG.[UIG ™ | commn(f, T, U, p)}

~» Like pIF T = U is usually defined as

Vg <p.(qlF T)= (qlF V)

e commp(f, T, U, p) enforces f to satisfy

f,
[Tl " [Ulgi
| |z,

(715 —— [l

23 /38

Forcing Layer

@ MLTTyx : extend MLTT with new constants -x ¢; : T1,...¢,: Tp
~+ ¢y does not appear in T; for j < k.

o F[], extends the translation [], to MLTTx
~ Flci], is provided.

Check that p : Pp = Flci], : F[Ti],, then:

IfT -7 M: T, then F[]° = F[M] : F[T]3. l

24 /38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat, <)

25 /38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat, <)
o Guard on types: >:U — U
e Fixpoints on univers: fix : T : U.(>T - T) - T
e fold, unfold, ...

25 /38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat, <)
o Guard on types: >:U — U
e Fixpoints on univers: fix : T : U.(>T - T) - T
e fold, unfold, ...

@ Relation with contractive maps by Birkedal & Mogelberg (LICS'13)

25 /38

An Example: Guarded Recursive Types

Define as the following forcing layer over P = (Nat, <)
o Guard on types: >:U — U
e Fixpoints on univers: fix : T : U.(>T - T) - T
e fold, unfold, ...
@ Relation with contractive maps by Birkedal & Mogelberg (LICS'13)

Impletementation in Coq:

F [D]g def

Aq : Natp AT @ [U]7.
(Ar : Natg.match r with
| 0 => Unit
| Sr’ => (m T)r'
,Ar i Natg. At : Nat,.Ax : U-match t with
| 0 => unit
| St' => (mpT) (Pred r) t' x)

25 /38

Coherence issues

@ Intentional type theory : Distinction betwen conversion (=) and
propositional equality (=7).

26 /38

Coherence issues

@ Intentional type theory : Distinction betwen conversion (=) and
propositional equality (=7).

@ Coherence issues arise:

~ [T{M/x}], # [T, {IM],/x}.
~» Link with coherence problems with categorical models of Dependent
Types (work of Curien, Hofmann).

26 /38

Coherence issues

@ Intentional type theory : Distinction betwen conversion (=) and
propositional equality (=7).

@ Coherence issues arise:

~ [T{M/x}], # [T, {IM],/x}.
~» Link with coherence problems with categorical models of Dependent
Types (work of Curien, Hofmann).

e but we can build a term of type [T {M/x}], =y [T], {[M],/x},

~> Use it to perform rewriting in the translation,
~ Need explicit coercions of conversion.

26 /38

Towards automatizable proofs of
equivalence

27 /38

Concrete Logical Relations

[Game Semantics]

[F-Mor]=[TFM:7]

(A

Trace Semantics
TEM:7]=[TF My:T7]

e A

Concrete Logical Relations
(M, Mp) € V7] w

+

(Temporal Logical Relations]
w = E[r](My, M2)

28 /38

Logical Relations

Binary relations & [7], V [7] on closed terms and values

~» inductively defined on types.

V [Int] = {(n,n) | neZ}

% [[7’ — O‘]] déf {()\Xl.Ml,AXQ.M2) | V(Vl, V2) S V[[T]] .
(()\Xl.Ml)Vl, ()\XQ.MQ)VQ) e€ [[0']]}

gl = {(My, M2) | (M1 ft AM2 1)
V(Mg =% v1) A (Ma =% va) A (v1, v2) € V[r]}

29 /38

Kripke Logical Relations (Pitts & Stark, Ahmed, Birkedal, Dreyer, ...)

Extension to languages with references.
~> Need worlds, i.e. invariants on heaps,
~ which can evolve w.r.t. control flow of programs
~ Parametrize the definition of logical relations with such worlds.
Elrw % {(Ml, Mp) | (b1, ho) = w.((Ma, by) 1t A(Ma, ho) 1)
V(((M1, hi) =% (v, B)) A (M2, ho) =* (va, B3))
' Jw.(hy, B w A (vi,ve) € V7] W’)}

30/38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

31/38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:

e Quantification over applicative contexts in £ [7] w
(Biorthogonality)
~~ Direct-style definition.

31/38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:
e Quantification over applicative contexts in £ [7] w
(Biorthogonality)
~~ Direct-style definition.
e Quantification over functional values in V[— o] w
~~ When 7 is functional,
~> Use fresh free variables instead.

31/38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:
e Quantification over applicative contexts in £ [7] w
(Biorthogonality)
~~ Direct-style definition.
e Quantification over functional values in V[— o] w
~~ When 7 is functional,
~> Use fresh free variables instead.

e Quantification over functional values in V [ref(7 — o)] w

~~ Deal with disclosed locations externally, in the definition of (hy, h2) : w.
~ Remove the circularity between logical relations and worlds.

31/38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:
e Quantification over applicative contexts in £ [7] w
(Biorthogonality)
~~ Direct-style definition.
e Quantification over functional values in V[— o] w
~~ When 7 is functional,
~> Use fresh free variables instead.

e Quantification over functional values in V [ref(7 — o)] w

~~ Deal with disclosed locations externally, in the definition of (hy, h2) : w.
~ Remove the circularity between logical relations and worlds.

o Quantification over new disjoint invariants in w’ J w
~» Use a fixed transition system instead.

31/38

Toward simple proofs of equivalence

Starting Point : Kripke logical relations with STS of heap-invariants as
world (Dreyer, Neis & Birkedal).
Remove all the quantifier on “complex” elements of their definition:
e Quantification over applicative contexts in £ [7] w
(Biorthogonality)
~~ Direct-style definition.
e Quantification over functional values in V[— o] w
~~ When 7 is functional,
~> Use fresh free variables instead.
e Quantification over functional values in V [ref(7 — o)] w

~~ Deal with disclosed locations externally, in the definition of (hy, h2) : w.
~ Remove the circularity between logical relations and worlds.

o Quantification over new disjoint invariants in w’ J w
~» Use a fixed transition system instead.

‘ Give rise to our definition of “Concrete Logical Relations”

31/38

Concrete Logical Relations

@ All what we need to reason on equivalence:

32/38

Concrete Logical Relations

@ All what we need to reason on equivalence:

~~ A transition system representing the control flow between the term and
its environment (i.e. contexts)

32/38

Concrete Logical Relations

@ All what we need to reason on equivalence:

~~ A transition system representing the control flow between the term and
its environment (i.e. contexts)
~> Private transitions: only the term can take them,

32/38

Concrete Logical Relations

@ All what we need to reason on equivalence:
~~ A transition system representing the control flow between the term and
its environment (i.e. contexts)
~> Private transitions: only the term can take them,

~» Public transitions: execution to a value, so the environment can take
them (well-bracketing),

32/38

Concrete Logical Relations

@ All what we need to reason on equivalence:
~~ A transition system representing the control flow between the term and
its environment (i.e. contexts)
~> Private transitions: only the term can take them,
~» Public transitions: execution to a value, so the environment can take
them (well-bracketing),
~~ Labels on transitions: heap-invariants, disclosure process of locations.

32/38

Concrete Logical Relations

@ All what we need to reason on equivalence:

~~ A transition system representing the control flow between the term and
its environment (i.e. contexts)

~> Private transitions: only the term can take them,

~» Public transitions: execution to a value, so the environment can take
them (well-bracketing),

~~ Labels on transitions: heap-invariants, disclosure process of locations.

@ Reason on open terms with free functional variables
~~ Make the full control flow apparent in the operational reduction.

32/38

Soundness and Completeness

@ Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

33/38

Soundness and Completeness

@ Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

@ Correspondence with Trace semantics.

33/38

Soundness and Completeness

@ Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

@ Correspondence with Trace semantics.

@ Soundness:

~> Introduce Kripke trace semantics,
~» Perform “surgery” on traces.

33/38

Soundness and Completeness

@ Proofs by induction on typing judgment seems impossible (no
“compatibility lemmas”).

@ Correspondence with Trace semantics.

@ Soundness:

~> Introduce Kripke trace semantics,
~» Perform “surgery” on traces.

o Completeness:

~> No more biorthogonality,
~> Need “adequate” LTS: dual of Kripke Logical Relations,
~ Show that it always exists: exhaustive worlds.

33/38

Callback with lock

M = C[£();x ==!x + 1]
MsP! = C[letn=!xinf();x:=n+1] where
C = letb =reftrue in let x =refO0in

(Mf.if 'b then b := false; o ;b := true else (), _.!x)

34 /38

Callback with lock

M = C[£();x ==!x + 1]
MsP! = C[letn=!xinf();x:=n+1] where
C = letb =reftrue in let x =refO0in

(Mf.if 'b then b := false; o ;b := true else (), _.!x)

T= {KX —; 0,0p — true} {gx y n} =
® Op
* Oy i true}
{ly i n} = LN {bosiny 2
{lx—inlp—false} | | {ly—;n+1,
v/ {p > true}

O

34 /38

Automatically generated temporal formula

E[r] (M5, MsP') is equal to

HNo.(Nyeg.(J\Gfl.(N2€4.(./\/’2£3.(X((€2 1 0) AN (51 1 true) AN (54 0 O) A (@3 0 true)/\
((|:|(’7"[Ns.(VX(;7 X7, xs,XQ.(((fz —1 Xe) A (f1 —1 X7) A (£4 o Xs) A (€3) Xg)) =

((X(((x7 = true) A (x9 = true)) = ((£2 —1 x6) A (€1 1 false) A (€4 —2 x8) A (€3 —2 false)A
(Opub(Vx10, %11, 13, x14.(((f2 1 x10) A (€1 —1 x11) A (g —2 x13) A (f3 2 x14)) =
(X(VXQ, X15.(((X12 = X10 + 1) AN (X15 = xg + 1)) = ((@2 =1 X12) A (41 1 true)/\

(s 2 x15) A (€3 2 true) A (Ppun(N5)))))))))))) A (not((x7 = true) A (x¢ = false)))A
(not((x7 = false) A (x9 = true))) A (X(((x7 = false) A (x9 = false)) =

((£2 1 %6) A (L1 21 %7) A (a2 x8) A (€3 =2 x9) A (Ppun(Ns5))))))))))

AN(O(HN16.(V[x17, x18, X19, X20]- (€2 +>1 x17) A (€1 —1 x18) A (£a 2 x19) A (€3 2 x20)) =
(X((€2 =1 x17) A (€1 1 x18) A (La 2 x19) A (L3 2 X20) A (%17 = %19) A (Ppun(N16)))))))))

A(Ppun(N0))))))))

35/38

Translation to SMT-LIB

(assert (exists ((s21 Int) (h22 Heap) (h23 Heap) (12 Int) (11 Int)) (and (not (= 11 12))

(exists ((14 Int)(13 Int)) (and (not (= 13 14)) (exists ((s25 Int)(h26 Heap) (h27 Heap) (S28 LocSpan))

(and (TransPriv s21 s25 h22 h23 h26 h27 $28) (and (= (select h26 12) 0) (= (select h26 11) 0)

(= (select h27 14) 0) (= (select h27 13) 0) (and (forall ((s29 Int) (h30 Heap) (h31 Heap) (S32 LocSpan))

(=> (TransPrivT s25 s29 h26 h27 h30 h31 $32) (forall ((x6 Int)(x7 Int)(x8 Int)(x9 Int))

(=> (and (= (select h30 12) x6) (= (select h30 11) x7) (= (select h31 14) x8) (= (select h31 13) x9))
(and (exists ((s33 Int)(h34 Heap) (h35 Heap) (S36 LocSpan)) (and (TransPriv s29 s33 h30 h31 h34 h35 S36)
(=> (and (= x7 0) (= x9 0)) (and (= (select h34 12) x6) (= (select h34 11) 1) (= (select h35 14) x8)

(= (select h35 13) 1) (forall ((s37 Int)(h38 Heap) (h39 Heap)(S40 LocSpan))

(=> (TransPubT s33 s37 h34 h35 h38 h39 S40) (forall ((x10 Int)(x11 Int)(x13 Int) (x14 Int))

(=> (and (= (select h38 12) x10) (= (select h38 11) x11) (= (select h39 14) x13) (= (select h39 13) x14))
(exists ((s41 Int)(h42 Heap) (h43 Heap) (S44 LocSpan)) (and (TransPriv s37 s41 h38 h39 h42 h43 544)

(forall ((x12 Int)(x15 Int)) (=> (and (= x12 (+ x10 1)) (= x15 (+ x8 1))) (and (= (select h42 12) x12)
(= (select h42 11) 0) (= (select h43 14) x15) (= (select h43 13) 0)

(TransPub s29 s41 h30 h31 h42 h43 S44))))))))))))))

(not (and (= x7 0) (= x9 1))) (not (and (= x7 1) (= x9 0)))

(exists ((s45 Int)(h46 Heap) (h47 Heap) (S48 LocSpan)) (and (TransPriv s29 s45 h30 h31 h46 h47 S48)

(=> (and (= x7 1) (= x9 1)) (and (= (select h46 12) x6) (= (select h46 11) x7) (= (select h47 14) x8)

(= (select h47 13) x9) (TransPub s29 s45 h30 h31 h46 h47 $48))))))))))

(forall ((s49 Int)(h50 Heap) (h51 Heap) (S52 LocSpan)) (=> (TransPrivT s25 s49 h26 h27 h50 h51 S52)

(forall ((x17 Int)(x18 Int) (x19 Int)(x20 Int)) (=> (and (= (select h50 12) x17) (= (select h50 11) x18)
(= (select h51 14) x19) (= (select h51 13) x20)) (exists ((s53 Int) (h54 Heap) (h55 Heap) (S56 LocSpan))
(and (TransPriv s49 s53 h50 h51 h54 h55 S56) (and (= (select h54 12) x17) (= (select h54 11) x18)

(= (select h55 14) x19) (= (select h55 13) x20) (= x17 x19) (TransPub s49 s53 h50 h51 h54 h55 S56)))))))))
(TransPub s21 s25 h22 h23 h26 h27 $28)))))))))

(check-sat)

36 /38

@ Extend the presheaves translation with forcing conditions as
categories

~» Useful for an implementation of a Nominal Dependent Type Theory ?

@ Reason on recursive programs:
~-» Combination with Higher-order Recursive Schemes (Ong et al.) ?

@ Decidability results:

~~ Semi-decidability: generate worlds,
~~ Full decidability: reason on adequate worlds,
~~ Decidability of the contextual equivalence of v-calculus ?

@ Polymorphic languages ?

37/38

A Unified Theory ?

Kripke Logical relations with worlds as
Bisimulations over
Traces generated by LTS

Game Semantics as

Presheaves over

~» Open maps (Joyal, Nielsen & Winskel)
~~ Innocent Strategies as Presheaves (Hirchowitz & Pous)

~~ Transition systems over games (Levy & Staton, LICS'14)

38/38

